“DESIGNED FOR ROUGH AND ROCKY RIDES”
DESIGNED FOR ROUGH AND ROCKY RIDES ON BIG BIKES WITH 200 MM OF TRAVEL. TRP DH7 SERIES DERRAILLEURS LIKE IT STEEP, FAST AND ENJOY BREATHTAKING AIRTIME.

TRP (TEKTRO Racing Products) presents a new shifter and derailleur designed for the gravity-focused rider. The TRP DH7 series drivetrain components are the result of an intimate development relationship with 5 x DH World Cup Overall Champion Aaron Gwin and his personal mechanic John Hall. From start to finish this project has spanned more than two full years.

In 2006 TEKTRO set out to develop a high-end, racing-focused product line, building on their values of quality control and precise engineering. The products developed under the name TRP have been tested, raced and proven in the most extreme conditions. Since then TRP has worked with world champions in cyclocross, BMX, and MTB to create new products. The courage the three owners, Gary Chen, Leo Chen and Aver Tsai, who founded TEKTRO in 1986, has paid off over time.

TEKTRO pulled together a special team to take on this new product category for TRP. Louis Tsai, son of founder Aver Tsai, head of TEKTRO/TRP Production and R&D - leads the TRP drivetrain development team and oversees a new production line, located in the main production facility in Changhua, Taiwan.

“There are a wide range of bikes, riding styles and riders today. TRP focused on specific segments to launch its new product. After the first two years working successfully with Aaron and John on brakes we showed them our ideas for a new TRP shifter and derailleur. When we asked them if they wanted to become part of the development team, they immediately were open to shift their focus to drivetrain with us. Since then they have been pushing and challenging us - which is why we like working with Aaron and John.” - Lance Larrabee, TRP Managing Director.

Because there is already a well established range of chains available, TRP will offer shifters and derailleurs for 7 speed systems. This gives riders the chance to build their own winning package.
The ongoing competition amongst the best mechanics in the world during a World Cup season is to build the quietest bike on the track. John Hall identified the movement of the derailleur around the B-knuckle as one of the points for improvement. This inspired John’s idea to lock the B-knuckle to the bike’s derailleur hanger. TRP engineers worked closely with Hall to create the Hall Lock feature. The Hall Lock is a lever integrated into the mount, which can be opened or closed, as needed. When working on the derailleur or changing the wheel, the Hall Lock is opened. When closed, the derailleur is locked to the frame and is stabilized in the roughest conditions. This feature helps maintain the utmost accuracy in shifting and superb chain retention. Its clamping force can be adjusted to balance stability and security with the derailleur’s ability to deflect on impact. Depending on the suspension layout of the bike, there can be different amounts of chain growth. This is why the team designed adjustability into TRP’s ratchet style clutch. If a rider wants to free up the system, they can back off the clutch to balance pedal feedback with the clutch’s chain retaining properties.

FEATURES AND BENEFITS

DH7 DERAILLEUR

TRP DERAILLEURS

The ongoing competition amongst the best mechanics in the world during a World Cup season is to build the quietest bike on the track. John Hall identified the movement of the derailleur around the B-knuckle as one of the points for improvement. This inspired John’s idea to lock the B-knuckle to the bike’s derailleur hanger. TRP engineers worked closely with Hall to create the Hall Lock feature. The Hall Lock is a lever integrated into the mount, which can be opened or closed, as needed. When working on the derailleur or changing the wheel, the Hall Lock is opened. When closed, the derailleur is locked to the frame and is stabilized in the roughest conditions. This feature helps maintain the utmost accuracy in shifting and superb chain retention. Its clamping force can be adjusted to balance stability and security with the derailleur’s ability to deflect on impact. Depending on the suspension layout of the bike, there can be different amounts of chain growth. This is why the team designed adjustability into TRP’s ratchet style clutch. If a rider wants to free up the system, they can back off the clutch to balance pedal feedback with the clutch’s chain retaining properties.

FEATURES AND BENEFITS

- Hall Lock
- G-Spec Ratchet Clutch
- G-Spec finishing touches:
 - Carbon fiber cage & Upper link
 - Extra wide parallelogram pivot
 - Sealed cartridge bearings pulleys
DH7 SHIFTER

TRP SHIFTER
Ergonomics are key to Aaron and he wanted something different for a reason. In addition to adjustability, TRP engineers looked at the cable release lever’s ergonomics and devised a system to move it in a linear path to mimic the motion of a rider’s thumb rather than rotating away. This unique ergonomic allows for more consistent thumb contact and overall better grip and shifting performance when the trail gets rowdy.

FEATURES AND BENEFITS
- Shift levers designed and located for optimum performance by Aaron Gwin
- Enhanced grip & tactile feel built into lever paddles: embossed grooves on advance and release lever
- Carbon fiber upper housing & advance lever
- Ball bearing equipped
- 7 speed
- Tool-free straight lace cable changes
- Rider adjustable home position of lower lever with a 40-degree range
HALL LOCK

Out of an internal challenge between the World Cup mechanics and Aaron’s wish for less noise, John Hall sparked the idea and built a foundation for the Hall Lock, which he then worked to develop with TRP’s engineers. A standard derailleur can rotate around the B-knucke, the point where it is connected to the frame and hanger, but this interaction can create noise and instability in the shifting system. The Hall Lock serves to quiet the derailleur and add stability to the platform.

- Hall Lock is an on/off feature with adjustable force that brings TRP’s derailleurs the utmost stability, accuracy, chain retention and quietness in operation for mountain biking’s roughest conditions
- It can lock-out the main pivot bolt to prevent your derailleur from lifting, slapping and making noise
- You can set it up however you like – if you want maximum stability you can lock it; if you like it to move like a standard derailleur you can adjust it to do so

RATCHET CLUTCH

The second derailleur feature is a ratchet style clutch, which is adjustable. Depending on a bike’s suspension design, there can be enough chain growth to feel resistance from the clutch. If a rider wants to free up the system up, he or she can back off the clutch to balance pedal feedback with the clutch’s chain retaining properties.

- Large diameter clutch surfaces for wear resistance and predictable force generation
- Oversized friction surface for consistent force output
- Adjustable clutch force provides a wide range of customizable ride tuning and compensation for wear
- Quick and easy on/off switch removes all clutch force when needed for wheel changes
- Robust pawl engagement

SET-UP AIDS

Shop mechanics and non-mechanics alike appreciate both will appreciate when components can be set up quickly and smartly. To this end, TRP derailleurs have two specific graphic indicators printed on the derailleur’s architecture. Together they serve to save time for set-up and provide an easy check for assurance.

- B-Adjustment - Small guideline printed on the back side of the derailleur’s cage above the top pulley
- Marking aids help mechanics and riders in setting up the B-Adjustment gap and ensures that an accurate adjustment can be made quickly and without special tools

CHAIN LENGTH INDICATOR

- Guideline printed on the front of the derailleur’s knuckle.
- Marking helps ensure a quick and accurate measure of the system’s required chain length
FOUR YEARS AGO, TRP STARTED WORKING WITH AARON GWIN AND HIS PERSONAL MECHANIC JOHN HALL.

This was the pivot. Consistent racing performance at an insane riding level that leaves spectators speechless – Aaron Gwin won two of his five DH WorldCup overall titles on TRP brakes.

Once the TRP R&D team showed Aaron and John first ideas and prototypes of the TRP drivetrain, they wanted to be part of this project. Aaron and John embraced every opportunity to bring in their experience, views and ideas to TRP:

“It is a pretty complicated project to make a derailleur – there are a lot of patents and all kind of things you have to work around, so you’ve got to be really innovative to find your own way to do things and also to make it better. The thing I enjoyed most working with the TRP crew, is their trust in John and I, and vice versa.”

Aaron Gwin

“The end result of improvement, whether it is a product, whether it is results, just elevating the game in all areas – that’s what really drives me. Take a chance on it, it is pretty cool how the product grows on you and it becomes yours – you’ll be blown away.”

John Hall

Aaron and his mechanic John Hall are constantly pushing and challenging the TRP Team – this is why we like working with them.
THE COMPANY

SINCE 1986....

TEKTRO IS A 33-YEAR-OLD FAMILY BUSINESS BASED IN TAIWAN.

Today, all major bicycle brands use TEKTRO brakes on their entry-level bikes. They value Tektro's reliability and quality production know-how. Things changed in 2006, when Tektro launched the high end brand TRP.

In 1986, three friends Gary Chen, Leo Chen and Aver Tsai founded TEKTRO with 20 employees in Changhua, Taiwan. The first factory was about the size of a basketball court. The monthly production capacity was at 50,000 sets of cantilever brakes. Their business values drove their success: work dependably, design creatively, manage efficiently and keep production at the highest quality. 1999 TEKTRO launched its first hydraulic disc brake, which still is the company’s most successful and important product. Today, TEKTRO has production facilities in Taiwan and China with over 1,200 employees and provides sales and service in Taiwan, China, Europe and USA.

TRP stands for TEKTRO Racing Product. TRP stepped into smaller categories, has created multiple product success stories and numerous race wins, including time trial, cyclo-cross, downhill.

1986 Gary Chen, Leo Chen and Aver Tsai founded Tektro in Changhua, Taiwan
1999 TEKTRO launches their first hydraulic disc brake “Gemini”
2000 TEKTRO opens factory in Shengmao, Shenzen, China
2002 TEKTRO opens factory Weicheng in Wuxi, China
2006 TEKTRO launches TRP
2009 TEKTRO opens the new factory in Changhua
2009 TEKTRO management completes a cycling trip around the island of Taiwan
2015 TEKTRO opens R&D office downtown Taichung
2016 TEKTRO 30th anniversary
2019 TRP starts drivetrain systems
TRP TAKES THE "R" IN TRP SERIOUS. OUR PARTNERSHIP WITH PROFESSIONAL ATHLETES AND TEAMS BRINGS US AN IMPORTANT USER EXPERIENCE FROM THE REAL WORLD - AT THE HIGHEST LEVEL.

THE FOLLOWING TEAMS, ATHLETES AND THEIR MECHANICS HAVE BEEN INSTRUMENTAL AND CLOSELY INVOLVED INTO THE TRP PRODUCT DEVELOPMENT PROCESS. WE LIKE TO THANK EVERYBODY FOR THE TIME AND EFFORTS INVESTED.

Intense Factory Racing | Headlined by Aaron Gwin, Intense Factory Racing has a roster bolstered by Neko Mullaly and Jack Moir. The Intense riders and mechanics, led by John Hall, have been an integral part of developing the TRP drivetrain series.

Scott DH Factory | A new team on the circus 2019, the Scott’s new DH Factory team brings a TRP veteran, Brendan Fairclough, together with Floy Payet, Marie Cabirou and Dean Lucas.

Commencal / 100% | The team is racing the second season on TRP brakes and the first on drivetrain. Thomas Estaque, Hugo Frixitalon, Antonie Rogge, Bruce Klein and their mechanics Jampi and Benjamin have been very instrumental in testing new development stages.

YT Mob | Martin Whitely and his YT Mob have been long time partners. Their new program with Angel Suarez is bringing new talents to the sport.
For the last five years John Hall has been responsible for every screw on Aaron’s bike. He grew up working on his family’s ranch in South Dakota, where hard work is the norm. That said, he’s the first one to work smarter rather than harder. “You don’t want to be jacking around with all of the little things all the time, there are enough things on a race weekend,” says Hall. “You just want to be able to do a quick once over and ride.” With this in mind, here’s John Hall’s TRP derailleur hacks.

Ratchet Clutch - You shouldn’t need to adjust the TRP ratchet clutch when it’s new. “More times than not, I will wait until the clutch is worn before I make an adjustment to tighten it up. The factory setting is perfectly fine.”

Hall Lock - Always have the Hall Lock lever open when installing the derailleur; working on it or changing the wheel – thank you.
Out of the box the Hall Lock is loose and should be adjusted. “After I have installed the derailleur and get everything adjusted, I tighten the set screw to the point where it stops itself. I want it to be as tight as it can be, while still being able to operate the Hall Lock lever with my fingers. “That seems to be a really good spot. It keeps everything good and tight and the noise down, but when it takes a hit from a rock it doesn’t have so much tension that it can’t move out of the way.”

Proper chain length - When sizing the chain, John suggests that you, “Run the chain around the smallest cog on the cassette through the derailleur and then use the closest link that adds a little bit of pressure onto the clutch.”

When using the Clutch and Hall Lock adjustments, less is more - “The smaller you make your adjustments the better,” says Hall. “If you think you need to do a 30 degree turn, do a 15 degree of a turn, especially on the clutch because there are two screws that you adjust, so when you do a 15 degree of a turn on each, that essentially turns into an 30 degree of a turn on the whole system, which is a lot. Out of the box you shouldn’t have to adjust it. The only time you want to touch it is as it wears—you can bring it back to life by adding a little bit of tension, which just extends the longevity of your whole clutch system.”

What can go wrong? Reset the Hall Lock after an impact - If you crash or you hit your TRP derailleur on a rock when riding the Hall Lock is meant to move, even if it’s engaged, in order to prevent catastrophic damage to the derailleur. If this happens, it’s important to take an extra step before you jump back on and ride. “Always be sure to release the Hall Lock and allow that derailleur B-screw to drop back down to the B-plate before you turn your Hall Lock back on,” says Hall. “In this rare scenario, if you just push your derailleur back into place with the Hall Lock on, you can actually loosen that derailleur mounting bolt. We may talk about this a lot, but I’ve actually never hit this derailleur hard enough to push it off the B-plate. It’s just one of those things to know, in the rare case it does happen, that you don’t want to just shove your derailleur back down without turning the Hall Lock off.”
SPECIFICATIONS

DH7 Rear Derailleur

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speeds</td>
<td>7</td>
</tr>
<tr>
<td>Weight</td>
<td>272g</td>
</tr>
<tr>
<td>Materials</td>
<td>Forged Aluminum and Carbon Fiber</td>
</tr>
<tr>
<td>Colors</td>
<td>Black, Gold, Silver</td>
</tr>
<tr>
<td>Outer Cage</td>
<td>Forged Aluminum</td>
</tr>
<tr>
<td>Chain Compatibility</td>
<td>11 speed</td>
</tr>
<tr>
<td>Inner Cage</td>
<td>Forged Aluminum</td>
</tr>
<tr>
<td>Spring</td>
<td>Stainless</td>
</tr>
<tr>
<td>Bearings</td>
<td>Sealed Stainless Steel</td>
</tr>
<tr>
<td>Cage Sizes</td>
<td>7 speed</td>
</tr>
<tr>
<td>Mount Options</td>
<td>Hall Lock™</td>
</tr>
<tr>
<td>Max Tooth</td>
<td>25</td>
</tr>
<tr>
<td>Pulleys</td>
<td>11t pair</td>
</tr>
<tr>
<td>B Knuckle</td>
<td>Hall Lock™</td>
</tr>
<tr>
<td>Clutch</td>
<td>Ratchet Clutch Technology</td>
</tr>
<tr>
<td>Set-Up Aids</td>
<td>Chain Length Icon</td>
</tr>
<tr>
<td>Retail Availability</td>
<td>2019</td>
</tr>
</tbody>
</table>

DH7 Shifter

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speeds</td>
<td>7</td>
</tr>
<tr>
<td>Weight</td>
<td>120g</td>
</tr>
<tr>
<td>Materials</td>
<td>Aluminum and Carbon Fiber</td>
</tr>
<tr>
<td>Colors</td>
<td>Black, Gold, Silver</td>
</tr>
<tr>
<td>Advance Lever</td>
<td>Carbon Fiber</td>
</tr>
<tr>
<td>Compatibility</td>
<td>TRP DH7</td>
</tr>
<tr>
<td>Release Lever</td>
<td>Forged Aluminum</td>
</tr>
<tr>
<td>Bearings</td>
<td>Sealed Stainless Steel</td>
</tr>
<tr>
<td>Cable</td>
<td>Tool-free Straight Lace</td>
</tr>
<tr>
<td>Technology</td>
<td>Linear Release Action</td>
</tr>
<tr>
<td>Other</td>
<td>5 maximum upshifts</td>
</tr>
<tr>
<td>Adjustable advance lever</td>
<td></td>
</tr>
<tr>
<td>Retail Availability</td>
<td>2019</td>
</tr>
</tbody>
</table>

Specifications subject to change without notice.
SERVICE INFORMATION

INSTALLATION INSTRUCTIONS - REAR DERAILLEUR

1. Ensure the derailleur hanger is straight using a hanger alignment tool. (Hanger straightness is critical to the performance of the rear derailleur. As such, proper care must be taken to ensure it is within the tolerance specified by the frame manufacturer.)

2. Mount the derailleur to the hanger using a 5mm allen key. To do this, ensure that the clutch is switched to the off position and that the Hall Lock lever is in the off/upright position. (Failure to do so may prevent installation of the rear derailleur.) While tightening the main bolt to the hanger, ensure that the b plate is placed firmly up against the hanger. There should be no gap between the b plate and the hanger. Torque the derailleur to 10-12 Nm.

3. Install the chain onto the chainring and the smallest cog of the cassette. Route the chain through the derailleur. Bring the two ends of the chain together and identify the two inner links that will preload the derailleur cage enough to prevent the cage stop screw from resting on the knuckle. (Using the chain length decal as a reference can help quickly determine chain length.) Cut the chain to the appropriate length and connect the two ends using the included master link. (Ensure the chain is long enough to accommodate any chain growth by moving the bike through its full travel.)

4. Proceed to setting the high limit of the derailleur. With the chain on the smallest cog, pedal the bike and begin to turn the H Limit screw clockwise. This will push the derailleur onto the next largest cog. After the chain has settled onto the second smallest cog, back the H Limit screw out to allow the chain to fall onto the smallest cog. Ensure there is no noise from the chain rubbing the frame or second smallest cog on the cassette. After the shift cable is routed, pull it taut and tighten the cable pinch bolt to 4-6Nm.

5. Proceed to set the lower limit of the derailleur. Shift the derailleur into the largest cog of the cassette. Using a 3mm allen wrench, tighten the L Limit screw until the bolt contacts the derailleur. (This will prevent the derailleur from pushing the chain into the spokes.)

6. Adjust the ‘b’ tension using a 3mm allen wrench. Thread the b-tension screw clockwise to increase the gap between the upper pulley and the cassette. Thread the b-tension screw counter-clockwise to decrease the gap between the upper pulley and the cassette. Stop when the teeth of the largest cog of the cassette are 5-6mm away from the teeth of the upper pulley. This will allow proper shifting across the cassette. Turn the Hall Lock on by rotating it counterclockwise until it contacts the derailleur. (Do not make any adjustments to b-tension with the Hall Lock engaged.)
INSTALLATION INSTRUCTIONS - SHIFTER

1. Install shift housing from the handlebars to the rear derailleur following your frame manufacturers routing instructions. (Ensure there is enough housing to allow full rotation of the handlebars without restricting its movement.) Cut housing to the appropriate length and install a shift housing ferrule at each end of the housing.

2. Install the shifter on the bar using the supplied clamp and hardware (or the appropriate shifter integration clamp). Using a 4mm allen wrench, tighten the clamp bolt to 3 Nm. (If using carbon handlebars, lightly apply carbon paste to prevent rotation without overtightening.)

3. Thread the barrel adjuster all the way in and then rotate back two full turns to ensure proper indexing can be achieved.

4. Ensure the cable head is properly seated in the shifter mechanism and that the shifter is in the lowest gearing possible by pressing the release lever several times. Run the cable through the shifter housing and out to the rear derailleur. (If installing a new cable, remove the cable entry plug from the shifter and thread the cable through the shifter. Re-install the cable entry plug.)

5. Route the shift cable through the shift housing. Thread the cable through the cable pulley to the cable pinch plate on the arm of the derailleur. Tighten the bolt using 5mm allen wrench to 4-6 Nm. Trim any excess cable to 30-40mm and install a cable crimp end.

6. With the high and low limits set and the b-tension properly adjusted, index the shifter to ensure the derailleur functions properly. If the derailleur hesitates when shifting from the large cogs to the small cogs of the cassette, thread the barrel adjuster clockwise to decrease cable tension. If the derailleur hesitates when shifting from the small cogs to the large cogs of the cassette, thread the barrel adjuster counter-clockwise to increase cable tension. Adjust as needed.

7. Adjust the position of the advance lever (if desired) by loosening the two T10 Torx bolts holding the advance lever to the shifter. Once the lever is in the desired position, tighten the two T10 Torx fasteners to 1-1.5 Nm. (Note: With the advance lever rotated further back toward the rider, thumb clearance between the advance lever and the handlebar increases, making it easier to switch between the advance lever and release lever.)
REAR DERAILLEUR - SPARE PARTS KITS INSTALLATION

Replacing the Inner Cage and Pulleys (K-D7-1):

Remove the M4 fasteners from the inner cage and the outer cage using a 3mm allen. Remove the inner cage. Remove the upper and lower pulley and the accompanying bearing spacers. Install the new upper and lower pulley and the accompanying bearing spacers. (Note: Neither pulley is directional.) Install the new inner cage. Install the two M4 fasteners using a 3mm allen wrench. Tighten to 2-3 Nm.

Replacing the Upper and Lower Pulley (K-D7-2):

Remove the M4 fasteners from the inner cage and the outer cage using a 3mm allen. Remove the inner cage. Remove the upper and lower pulley and the accompanying bearing spacers. Install the new upper and lower pulley and the accompanying bearing spacers. (Note: Neither pulley is directional.) Replace the inner cage. Install the two M4 fasteners using a 3mm allen wrench. Tighten to 2-3 Nm.

Replacing the Cable Pulley (K-D-2):

Remove the cable pulley bolt using a 2.5mm allen. Remove the cable pulley cover plate. Remove the cable pulley and replace with a new one. Reinstall the cable cover plate and the cable pulley bolt using the 2.5mm allen. Tighten until snug. (Do not over-tighten; doing so may prevent rotation of pulley.)

Derailleur Hardware (K-D7-3):

B Tension Bolt – M4X18
Anti-vibration Plastic Block
H Limit Screw – M4X10
L Limit Screw – M4X16
Anti-vibration Plastic Block

Cable Anchor Kit (K-D-3):

Cable Anchor Bolt – M6X11.5
Cable Anchor Pinch Plate
Replacing the Advance (Pull) Lever (K-S-1):

Remove the two T10 Torx fasteners holding the advance lever to the shifter. Remove the advance lever plate and the advance lever. Install the new advance lever and advance lever plate to the shifter. Install the T10 Torx fasteners into the advance lever and tighten when set to your preference.

Replacing the Barrel Adjuster (K-S-2):

Remove the cable from the derailleur and shifter. Remove the shift cable housing from the barrel adjuster. Unthread the barrel adjuster out of the upper housing. Install the new barrel adjuster into the housing. (Note: the spring and bolt go into the collar.) Reinstall the cable and housing. Adjust as needed to set optimal cable tension.

Replacing the Shifter Clamp (K-S-3):

Remove the upper housing from the shifter using a 4mm allen wrench. Remove the bar clamp from the handlebars. Install the new clamp by sliding it onto the handlebar. Install the shifter to the clamp with the M5 bolt using a 4mm allen.

Replacing the Shifter Housing (K-S-4):

Remove the cable entry plug and the shift cable. Remove the upper housing from the bar clamp using a 4mm allen. Remove the barrel adjuster from the upper housing. Remove the advance lever screws using a T10 Torx. Remove the advance lever plate and the advance lever. Remove the three T10 Torx fasteners from the lower housing. Remove the lower housing. Remove the shifter mechanism from the upper housing. Install the shifter mechanism into the new upper housing. Install the new lower housing onto the upper housing. Install the shifter housing screws. Install the barrel adjuster in the new upper housing. Install the advance lever and the accompanying advance lever plate. Reinstall the two T10 Torx fasteners into the advance lever. Mount the shifter to the bar and tighten the clamp bolt to 4 Nm. Install the cable and cable entry plug. Adjust as needed.
HALL LOCK INSTALLATION

Before installing your rear derailleur, ensure the Hall Lock lever is in the off/open/upright position.

Install the rear derailleur using a 5mm allen, tightening to 10-12 Nm.

After adjusting the B gap to 5-6mm, turn the Hall Lock lever in to on/closed/down position.

Do not make any adjustments to B gap with the Hall Lock on.

In the event of rock strike, do not force the derailleur forward as doing so may loosen the mounting bolt. Simply open the hall lock lever to release the derailleur back to its original position.
DH7 COMPATABILITY CHART

<table>
<thead>
<tr>
<th>Cassette</th>
<th>Tooth Count</th>
<th>Freehub Driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sram XG-795 X0 DH</td>
<td>10-24</td>
<td>XD</td>
</tr>
<tr>
<td>Sram PG-720 GX DH</td>
<td>11-25</td>
<td>HG</td>
</tr>
<tr>
<td>e*thirteen 7spd</td>
<td>9-21</td>
<td>Integrated</td>
</tr>
<tr>
<td>Box ONE</td>
<td>11-24</td>
<td>HG</td>
</tr>
<tr>
<td>Box TWO</td>
<td>11-24</td>
<td>HG</td>
</tr>
<tr>
<td>Hope</td>
<td>10-24</td>
<td>Hope</td>
</tr>
<tr>
<td>Sunrace</td>
<td>11-24</td>
<td>HG</td>
</tr>
</tbody>
</table>

Chain

- Sram 11 Speed
- Shimano 11 Speed
- KMC DLC11
- KMC X11
- YBN
SERVICE INFORMATION

TROUBLESHOOTING GUIDE

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Cause</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derailleur won’t Install/Uninstall</td>
<td>Hall Lock is engaged</td>
<td>Turn Hall Lock off</td>
</tr>
<tr>
<td></td>
<td>B Plate is not parallel with Hanger</td>
<td>Check the B Plate and correct as needed</td>
</tr>
<tr>
<td>Shifter doesn’t move Derailleur</td>
<td>Cable is not routed through shifter properly</td>
<td>Route the cable through the cable carrier in the shifter</td>
</tr>
<tr>
<td></td>
<td>Cable pinch bolt is not sufficiently tight</td>
<td>Torque the cable pinch bolt to 4-6 Nm</td>
</tr>
<tr>
<td></td>
<td>Advance lever is not sufficiently tight</td>
<td>Tighten the advance lever retaining screws</td>
</tr>
<tr>
<td>Chain jumps from smallest cog to frame dropout</td>
<td>High gear limit screw is not adjusted properly</td>
<td>Turn in limit screw ‘H’ until the guide pulley is aligned with the outboard edge of the smallest cog</td>
</tr>
<tr>
<td>Difficult or impossible to shift chain onto smallest cog</td>
<td>High gear limit screw is not adjusted properly</td>
<td>Unscrew limit screw ‘H’ until the guide pulley is aligned with the outboard edge of the smallest cog</td>
</tr>
<tr>
<td>Chain jumps over largest cog and falls between the spokes and the largest cog, or inner cage plate contacts spokes</td>
<td>Low Gear Limit Screw is not adjusted properly</td>
<td>Turn in limit screw ‘L’ until the center of the guide pulley is aligned with the center of the largest cog</td>
</tr>
<tr>
<td>Rear derailleur or derailleur hanger is bent</td>
<td>Rear derailleur hanger is bent</td>
<td>Straighten using a derailleur hanger alignment guide or replace</td>
</tr>
<tr>
<td>Delayed shifting</td>
<td>Clearance between guide pulley/sprocket is too large</td>
<td>Adjust b-adjust screw by turning it counterclockwise</td>
</tr>
<tr>
<td>Rough Shifting behavior</td>
<td>Clearance between guide pulley/sprocket is too small</td>
<td>Adjust b-adjust screw by turning it clockwise</td>
</tr>
<tr>
<td>Shifts more gears onto smaller sprockets than intended</td>
<td>Shift cable insufficiently tensioned</td>
<td>Turn barrel adjuster on the shifter counterclockwise</td>
</tr>
<tr>
<td>Delayed shifting onto larger sprocket</td>
<td>Shift cable insufficiently tensioned</td>
<td>Turn barrel adjuster on the shifter counterclockwise</td>
</tr>
<tr>
<td>Delayed shifting onto smaller sprocket</td>
<td>Shift cable is too tight</td>
<td>Turn barrel adjuster on the shifter clockwise</td>
</tr>
<tr>
<td></td>
<td>Excessive cable friction, pinched or poorly routed cable</td>
<td>Lubricate or replace cable and housing. Check for excessive bending of cable housing and ensure cable is seated in pinch groove</td>
</tr>
<tr>
<td>Chain gap (clearance from largest cog to upper pulley wheel) is too large or too small</td>
<td>Chain is sized too small or too large</td>
<td>Size the rear chain according to the user manual</td>
</tr>
<tr>
<td></td>
<td>Rear suspension chainstay growth</td>
<td>Check the chain gap clearance when the rear suspension is both fully extended and compressed 30%</td>
</tr>
<tr>
<td>Chain falls off of pulleys</td>
<td>Worn or damaged pulleys</td>
<td>Replace pulleys</td>
</tr>
</tbody>
</table>
SHIFTING FOCUS

TRP DH7
Designed for rough and rocky rides on big bikes with 200 mm of travel. Riders like it steep, fast and enjoy breathtaking airtime.